Teacher professional development: Use of data to guide instruction Pre-K to 12 Education

Benefit-cost estimates updated December 2023. Literature review updated June 2014.

Current estimates replace old estimates. Numbers will change over time as a result of model inputs and monetization methods.

The WSIPP benefit-cost analysis examines, on an apples-to-apples basis, the monetary value of programs or policies to determine whether the benefits from the program exceed its costs. WSIPP's research approach to identifying evidence-based programs and policies has three main steps. First, we determine "what works" (and what does not work) to improve outcomes using a statistical technique called meta-analysis. Second, we calculate whether the benefits of a program exceed its costs. Third, we estimate the risk of investing in a program by testing the sensitivity of our results. For

more detail on our methods, see our Technical Documentation.

Program Description: One form of teacher professional development (PD) involves training teachers how to use student academic assessment data to modify and improve instruction. This type of PD is usually paired with computer software that tracks and reports student assessment data to teachers. The specific types of assessments and software that have been evaluated and are included in this meta-analysis are (in no particular order) ISI (Individualized Student Instruction) using A2i software, Data-Driven District (3D), mCLASS/Acuity, Looking at Student Work, Formative Assessments of Student Thinking in Reading (FAST-R), and 4sight.

Benefit-Cost Summary Statistics Per Participant						
Benefits to:						
Taxpayers	\$4,181	Benefit to cost ratio	\$147.84			
Participants	\$9,850	Benefits minus costs	\$19,028			
Others	\$5,191	Chance the program will produce				
Indirect	(\$65)	benefits greater than the costs	98%			
Total benefits	\$19,158					
Net program cost	(\$130)					
Benefits minus cost	\$19,028					

The estimates shown are present value, life cycle benefits and costs. All dollars are expressed in the base year chosen for this analysis (2022). The chance the benefits exceed the costs are derived from a Monte Carlo risk analysis. The details on this, as well as the economic discount rates and other relevant parameters are described in our Technical Documentation.

Meta-Analysis of Program Effects											
Outcomes measured	Treatment age	No. of effect sizes	Treatment N	Adjusted effect sizes and s benefit-co First time ES is estimated			tandard errors used in the st analysis Second time ES is estimated		Unadjusted effect size (random effects model)		
				ES	SE	Age	ES	SE	Age	ES	p-value
Test scores	10	10	196126	0.117	0.035	11	0.084	0.038	17	0.190	0.001

Meta-analysis is a statistical method to combine the results from separate studies on a program, policy, or topic in order to estimate its effect on an outcome. WSIPP systematically evaluates all credible evaluations we can locate on each topic. The outcomes measured are the types of program impacts that were measured in the research literature (for example, crime or educational attainment). Treatment N represents the total number of individuals or units in the treatment group across the included studies.

An effect size (ES) is a standard metric that summarizes the degree to which a program or policy affects a measured outcome. If the effect size is positive, the outcome increases. If the effect size is negative, the outcome decreases.

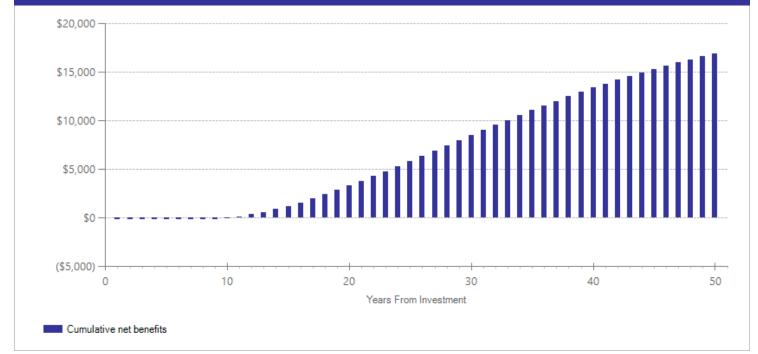
Adjusted effect sizes are used to calculate the benefits from our benefit cost model. WSIPP may adjust effect sizes based on methodological characteristics of the study. For example, we may adjust effect sizes when a study has a weak research design or when the program developer is involved in the research. The magnitude of these adjustments varies depending on the topic area.

WSIPP may also adjust the second ES measurement. Research shows the magnitude of some effect sizes decrease over time. For those effect sizes, we estimate outcome-based adjustments which we apply between the first time ES is estimated and the second time ES is estimated. We also report the unadjusted effect size to show the effect sizes before any adjustments have been made. More details about these adjustments can be found in our Technical Documentation.

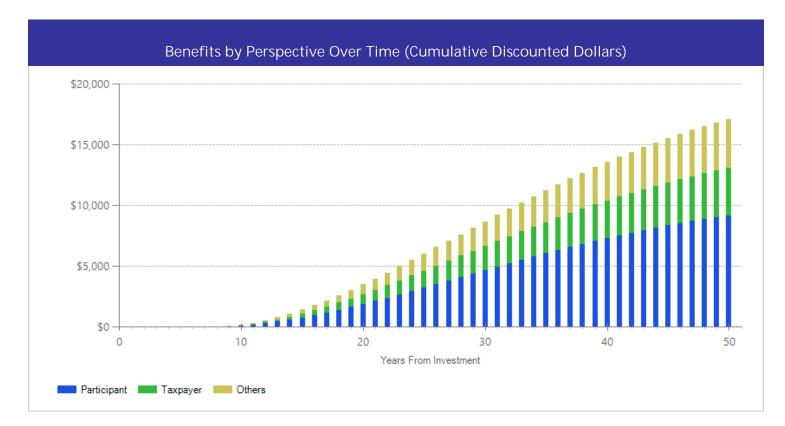
Detailed Monetary Benefit Estimates Per Participant								
Affected outcome:	Resulting benefits: ¹	Benefits accrue to:						
		Taxpayers	Participants	Others ²	Indirect ³	Total		
Test scores	Labor market earnings associated with test scores	\$4,181	\$9,850	\$5,191	\$0	\$19,223		
Program cost	Adjustment for deadweight cost of program	\$0	\$0	\$0	(\$65)	(\$65)		
Totals		\$4,181	\$9,850	\$5,191	(\$65)	\$19,158		

¹In addition to the outcomes measured in the meta-analysis table, WSIPP measures benefits and costs estimated from other outcomes associated with those reported in the evaluation literature. For example, empirical research demonstrates that high school graduation leads to reduced crime. These associated measures provide a more complete picture of the detailed costs and benefits of the program.

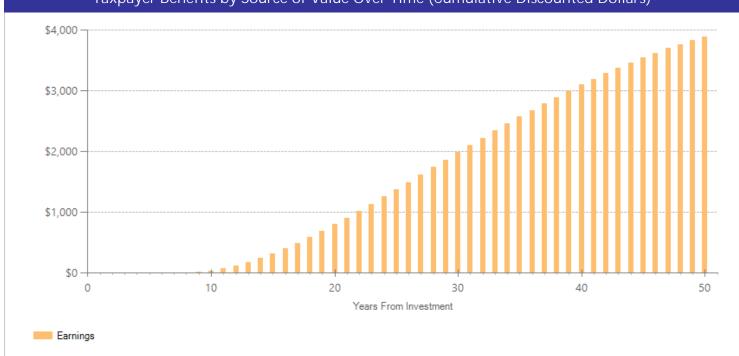
²"Others" includes benefits to people other than taxpayers and participants. Depending on the program, it could include reductions in crime victimization, the economic benefits from a more educated workforce, and the benefits from employer-paid health insurance.


³"Indirect benefits" includes estimates of the net changes in the value of a statistical life and net changes in the deadweight costs of taxation.

Detailed Annual Cost Estimates Per Participant								
	Annual cost	Year dollars	Summary					
Program costs Comparison costs	\$107 \$0	2013 2013	Present value of net program costs (in 2022 dollars) Cost range (+ or -)	(\$130) 10%				


In the evaluations included in the meta-analysis, teachers received an average of 26 hours of training in how to use student assessment data to guide instruction. We calculated the value of PD time using average teacher salaries (including benefits) in Washington State as reported by the Office of Superintendent of Public Instruction. To calculate a per-student annual cost, we divided compensation costs by the number of students per classroom in Washington's prototypical schools formula and add per-student materials, supplies, and operating costs to account for the overhead (i.e. facility, computer, and administrative costs) associated with providing PD.

The figures shown are estimates of the costs to implement programs in Washington. The comparison group costs reflect either no treatment or treatment as usual, depending on how effect sizes were calculated in the meta-analysis. The cost range reported above reflects potential variation or uncertainty in the cost estimate; more detail can be found in our **Technical Documentation**.


Benefits Minus Costs Over Time (Cumulative Discounted Dollars)

The graph above illustrates the estimated cumulative net benefits per-participant for the first fifty years beyond the initial investment in the program. We present these cash flows in discounted dollars. If the dollars are negative (bars below \$0 line), the cumulative benefits do not outweigh the cost of the program up to that point in time. The program breaks even when the dollars reach \$0. At this point, the total benefits to participants, taxpayers, and others, are equal to the cost of the program. If the dollars are above \$0, the benefits of the program exceed the initial investment.

The graph above illustrates the breakdown of the estimated cumulative benefits (not including program costs) per-participant for the first fifty years beyond the initial investment in the program. These cash flows provide a breakdown of the classification of dollars over time into four perspectives: taxpayer, participant, others, and indirect. "Taxpayers" includes expected savings to government and expected increases in tax revenue. "Participants" includes expected increases in earnings and expenditures for items such as health care and college tuition. "Others" includes benefits to people other than taxpayers and participants. Depending on the program, it could include reductions in crime victimization, the economic benefits from a more educated workforce, and the benefits from employer-paid health insurance. "Indirect benefits" includes estimates of the changes in the value of a statistical life and changes in the deadweight costs of taxation. If a section of the bar is below the \$0 line, the program is creating a negative benefit, meaning a loss of value from that perspective.

Taxpayer Benefits by Source of Value Over Time (Cumulative Discounted Dollars)

The graph above focuses on the subset of estimated cumulative benefits that accrue to taxpayers. The cash flows are divided into the source of the value.

Citations Used in the Meta-Analysis

- Al Otaiba, S., Connor, C.M., Folsom, J.S., Greulich, L., Meadows, J., & Li, Z. (2011). Assessment data-informed guidance to individualize kindergarten reading instruction: Findings from a cluster-randomized control field trial. *The Elementary School Journal*, *11*(4), 535-560.
- Connor, C.M., Morrison, F.J., Fishman, B.J., Schatschneider, C., & Underwood, P. (2007). The early years. Algorithm-guided individualized reading instruction. *Science*, 315(5811), 464-5.
- Fuchs, L.S., Fuchs, D., Karns, K., Hamlett, C.L., & Katzaroff, M. (1999). Mathematics performance assessment in the classroom: Effects on teacher planning and student problem solving. *American Educational Research Journal*, *36*(3), 609-646.
- Heller, J.I., Daehler, K.R., Wong, N., Shinohara, M., & Miratrix, L.W. (2012). Differential effects of three professional development models on teacher knowledge and student achievement in elementary science. *Journal of Research in Science Teaching*, 49(3), 333-362.
- Konstantopoulos, S., Miller, S.R., & van der Ploeg, A. (2013). The impact of Indiana's system of interim assessments on mathematics and reading achievement. *Educational Evaluation and Policy Analysis, 35*(4), 481-499.
- Quint, J.C., Sepanik, S., & Smith, J.K. (2008). Using student data to improve teaching and learning: Findings from an evaluation of the Formative Assessments of Students Thinking in Reading (FAST-R) Program in Boston elementary schools. New York: MDRC.
- Slavin, R.E., Cheung, A., Holmes, G.C., Madden, N.A., & Chamberlain, A. (2013). Effects of a data-driven district reform model on state assessment outcomes. American Educational Research Journal, 50(2), 371-396.
- Tyler, J.H. (2013). If you build it will they come? Teachers' online use of student performance data. Education Finance and Policy, 8(2), 168-207.

For further information, contact: (360) 664-9800, institute@wsipp.wa.gov

Printed on 03-25-2024

Washington State Institute for Public Policy

The Washington State Legislature created the Washington State Institute for Public Policy in 1983. A Board of Directors-representing the legislature, the governor, and public universities-governs WSIPP and guides the development of all activities. WSIPP's mission is to carry out practical research, at legislative direction, on issues of importance to Washington State.